Содержание

Таблица математических символов — это… Что такое Таблица математических символов?

В математике повсеместно используются символы для упрощения и сокращения текста. Ниже приведён список наиболее часто встречающихся математических обозначений, соответствующие команды в TeXе, объяснения и примеры использования.

Кроме указанных символов, иногда используются их зеркальные отражения, например, обозначает то же, что и

Знаки операций или математические символы — знаки, которые символизируют определённые математические действия со своими аргументами.

Символ (TeX) Символ (Unicode) Название Значение Пример
Произношение
Раздел математики

Импликация, следование означает «если верно, то также верно».
(→ может использоваться вместоили для обозначения функции, см. ниже.)
(⊃ может использоваться вместо
, или для обозначения надмножества, см. ниже.
).
верно, но неверно (так как также является решением).
«влечёт» или «если…, то»
везде
Равносильность означает « верно тогда и только тогда, когда верно».
«если и только если» или «равносильно»
везде
Конъюнкция истинно тогда и только тогда, когда и оба истинны. , если  — натуральное число.
«и»
Математическая логика
Дизъюнкция истинно, когда хотя бы одно из условий и истинно. , если  — натуральное число.
«или»
Математическая логика
¬ Отрицание истинно тогда и только тогда, когда ложно .
«не»
Математическая логика
Квантор всеобщности обозначает « верно для всех ».
«Для любых», «Для всех»
Математическая логика
Квантор существования означает «существует хотя бы один такой, что верно » (подходит число 5)
«существует»
Математическая логика
= Равенство обозначает « и обозначают одно и то же значение». 1 + 2 = 6 − 3
«равно»
везде

 :=

:⇔

Определение означает « по определению равен ».
означает « по определению равносильно »
(Гиперболический косинус)
(Исключающее или)
«равно/равносильно по определению»
везде
{ , } Множество элементов означает множество, элементами которого являются , и . (множество натуральных чисел)
«Множество…»
Теория множеств

{ | }

{ : }

Множество элементов, удовлетворяющих условию означает множество всех таких, что верно .
«Множество всех… таких, что верно…»
Теория множеств

{}

Пустое множество и означают множество, не содержащее ни одного элемента.
«Пустое множество»
Теория множеств

Принадлежность/непринадлежность к множеству
означает « является элементом множества »
означает « не является элементом множества »

«принадлежит», «из»
«не принадлежит»
Теория множеств

Подмножество означает «каждый элемент из также является элементом из ».
обычно означает то же, что и . Однако некоторые авторы используют , чтобы показать строгое включение (то есть ).

«является подмножеством», «включено в»
Теория множеств

Надмножество означает «каждый элемент из также является элементом из ».
обычно означает то же, что и . Однако некоторые авторы используют , чтобы показать строгое включение (то есть ).

«является надмножеством», «включает в себя»
Теория множеств
Собственное подмножество означает и .
«является собственным подмножеством», «строго включается в»
Теория множеств
Собственное надмножество означает и .
«является собственным надмножеством», «строго включает в себя»
Теория множеств
Объединение означает множество элементов, принадлежащих или (или обоим сразу).
«Объединение … и …», «…, объединённое с …»
Теория множеств
Пересечение означает множество элементов, принадлежащих и , и .
«Пересечение … и … », «…, пересечённое с …»
Теория множеств
\ Разность множеств означает множество элементов, принадлежащих , но не принадлежащих .
«разность … и … », «минус», «… без …»
Теория множеств
Функция означает функцию с областью определения и областью прибытия (областью значений) . Функция , определённая как
«из … в»,
везде
Отображение означает, что образом после применения функции будет . Функцию, определённую как , можно записать так:
«отображается в»
везде
N или ℕ Натуральные числа означает множество или реже (в зависимости от ситуации).
«Эн»
Числа
Z или ℤ Целые числа означает множество
«Зед»
Числа
Q или ℚ Рациональные числа означает
«Ку»
Числа
R или ℝ Вещественные числа, или действительные числа означает множество всех пределов последовательностей из
( — комплексное число: )
«Эр»
Числа
C или ℂ Комплексные числа означает множество
«Це»
Числа

<
>
Сравнение обозначает, что строго меньше .
означает, что строго больше .
«меньше чем», «больше чем»
Отношение порядка

≤ или ⩽
≥ или ⩾
Сравнение означает, что меньше или равен .
означает, что больше или равен .
«меньше или равно»; «больше или равно»
Отношение порядка
Приблизительное равенство с точностью до означает, что 2,718 отличается от не больше чем на . с точностью до .
«приблизительно равно»
Числа
Арифметический квадратный корень означает неотрицательное действительное число, которое в квадрате даёт .
«Корень квадратный из …»
Числа
Бесконечность и суть элементы расширенного множества действительных чисел. Эти символы обозначают числа, меньшее/большее всех действительных чисел.
«Плюс/минус бесконечность»
Числа
| | Модуль числа (абсолютное значение), модуль комплексного числа или мощность множества обозначает абсолютную величину .
обозначает мощность множества и равняется, если конечно, числу элементов .
«Модуль»; «Мощность»
Числа и Теория множеств
Сумма, сумма ряда означает «сумма , где принимает значения от 1 до », то есть .
означает сумму ряда, состоящего из .


«Сумма … по … от … до …»
Арифметика, Математический анализ
Произведение означает «произведение для всех от 1 до », то есть
«Произведение … по … от … до …»
Арифметика
 ! Факториал означает «произведение всех натуральных чисел от 1 до включительно, то есть

« факториал»
Комбинаторика
Интеграл означает «интеграл от до функции от по переменной ».
«Интеграл (от … до …) функции … по (или d)…»
Математический анализ
df/dx
f'(x)
Производная или означает «(первая) производная функции от по переменной ».
«Производная … по …»
Математический анализ

Производная -го порядка или (во втором случае если  — фиксированное число, то оно пишется римскими цифрами) означает «-я производная функции от по переменной ».
«-я производная … по …»
Математический анализ

dic.academic.ru

Математические символы — это… Что такое Математические символы?

Символ (Символ (Unicode) Название Значение Пример
Произношение
Раздел математики
Импликация, следование означает «если A верно, то B также верно».
Иногда вместо него используют .
верно, но неверно (так как x = − 2 также является решением).
«влечёт» или «если…, то»
везде
Равносильность означает «A верно тогда и только тогда, когда B верно».
«если и только если» или «равносильно»
везде
Конъюнкция истинно тогда и только тогда, когда A и B оба истинны. , если n — натуральное число.
«и»
Математическая логика
Дизъюнкция истинно, когда хотя бы одно из условий A и B истинно. , если n — натуральное число.
«или»
Математическая логика
¬ Отрицание истинно тогда и только тогда, когда ложно A.
«не»
Математическая логика
Квантор всеобщности обозначает «P(x) верно для всех x».
«Для любых», «Для всех»
Математическая логика
Квантор существования означает «существует хотя бы один x такой, что верно P(x (подходит число 5)
«существует»
Математическая логика
= Равенство x = y обозначает «x и y обозначают один и тот же объект». 1 + 2 = 6 − 3
«равно»
везде
: =

 :=
:⇔
Определение x: = y означает «x по определению равен y».
означает «P по определению равносильно Q»
(Гиперболический косинус)
(Исключающее или)
«равно/равносильно по определению»
везде
{,} { , } Множество элементов означает множество, элементами которого являются a, b и c. (множество натуральных чисел)
«Множество…»
Теория множеств
{ | }
{:}
{ | }
{ : }
Множество элементов, удовлетворяющих условию означает множество всех x таких, что верно P(x).
«Множество всех… таких, что верно…»
Теория множеств

{}

{}
Пустое множество {} и означают множество, не содержащее ни одного элемента.
«Пустое множество»
Теория множеств


Принадлежность/непринадлежность к множеству означает «a является элементом множества S»
означает «a не является элементом множества S»

«принадлежит», «из»
«не принадлежит»
Теория множеств


Подмножество означает «каждый элемент из A также являестя элементом из B».
обычно означает то же, что и . Однако некоторые авторы используют , чтобы показать строгое включение (то есть ).

«является подмножеством», «включено в»
Теория множеств
Собственное подмножество означает и .
«является собственным подмножеством», «строго включается в»
Теория множеств
Объединение означает множество элементов, принадлежащих A или B (или обоим сразу).
«Объединение … и …», «…, объединённое с …»
Теория множеств
Пересечение означает множество элементов, принадлежащих и A, и B.
«Пересечение … и … », «…, пересечённое с …»
Теория множеств
\ Разность множеств означает множество элементов, принадлежащих A, но не принадлежащих B.
«разность … и … », «минус», «… без …»
Теория множеств
Функция означает функцию f с областью определения X и областью прибытия Y. Функция , определённая как f(x) = x2
«из … в»,
везде
Отображение означает, что образом x после применения функции f будет f(x). Функцию, определённую как f(x) = x2, можно записать так:
«отображается в»
везде
N или ℕ Натуральные числа означает множество или (в зависимости от ситуации).
«Эн»
Числа
Z или ℤ Целые числа означает множество
«Зед»
Числа
Q или ℚ Рациональные числа означает
«Ку»
Числа
R или ℝ Вещественные числа, или действительные числа означает множество всех пределов последовательностей из
(i — комплексное число: i2 = − 1)
«Эр»
Числа
C или ℂ Комплексные числа означает множество
«Це»
Числа

<
>
Сравнение x < y обозначает, что x строго меньше y.
x > y означает, что x строго больше y.
«меньше чем», «больше чем»
Отношение порядка

≤ или ⩽
≥ или ⩾
Сравнение означает, что x меньше или равен y.
означает, что x больше или равен y.
«меньше или равно»; «больше или равно»
Отношение порядка
Приблизительное равенство с точностью до 10 − 3 означает, что 2,718 отличается от e не больше чем на 10 − 3. с точностью до 10 − 7.
«приблизительно равно»
Числа
Арифметический квадратный корень означает положительное действительное число, которое в квадрате даёт x.
«Корень квадратный из …»
Числа
Бесконечность и суть элементы расширенного множества действительных чисел. Эти символы обозначают числа, меньшее/большее всех действительных чисел.
«Плюс/минус бесконечность»
Числа
| | Модуль числа (абсолютное значение), модуль комплексного числа или мощность множества обозначает абсолютную величину x.
| A | обозначает мощность множества A и равняется, если A конечно, числу элементов A.
«Модуль»; «Мощность»
Числа и Теория множеств
Сумма, сумма ряда означает «сумма ak, где k принимает значения от 1 до n», то есть .
означает сумму ряда, состоящего из ak.

= 12 + 22 + 32 + 42
= 30
«Сумма … по … от … до …»
Арифметика, Математический анализ
Произведение означает «произведение ak для всех k от 1 до n», то есть
«Произведение … по … от … до …»
Арифметика
Интеграл означает «интеграл от a до b функции f от x по переменной x».
«Интеграл (от … до …) функции … по (или d)…»
Математический анализ

f‘(x)
df/dx
f'(x)
Производная или f‘(x) означает «(первая) производная функции f от x по переменной x».
«Производная … по …»
Математический анализ

f(n)(x)
dnf / dxn
f(n)(x)
Производная n-го порядка или f(n)(x) (во втором случае если n — фиксированное число, то оно пишется римскими цифрами) означает «n-я производная функции f от x по переменной x».
«n-я производная … по …»
Математический анализ

dic.academic.ru

Таблица научных, математических, физических символов и сокращений. Скоропись физического, математического, химического и, в целом, научного текста, математические обозначения. Математический, Физический алфавит, Научный алфавит.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Алфавиты, номиналы, единицы / / Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон…  / / Таблица научных, математических, физических символов и сокращений. Скоропись физического, математического, химического и, в целом, научного текста, математические обозначения. Математический, Физический алфавит, Научный алфавит.

Поделиться:   

Таблица научных обозначений, математических обозначений, физических символов и сокращений. Сокращённая и символьная запись физического, математического, химического и, в целом, научного текста, математические обозначения / научные обозначения. Математический алфавит. Математическая скоропись. Негламурный эксклюзив от Проекта dpva.ru Вариант для печати.

dpva.ru

Знаки и операции в мат. логике · Как пользоваться Контрольная Работа РУ

Приведём таблицу знаков операций и знаков, которые используются в математической логике, а также обозначим, в каком же приоритете должны использоваться операции, если в каком-то логическом выражении не проставлены скобочки.


¬a
    - отрицание
a⇒b
    - импликация
a∧b
    - конъюкция
a∨b
    - дизъюнкция
a⇔b
    - эквиваленция
a⊕b
    - сложение по модулю 2 (Исключающее или)
a|b
    - Не-и (штрих Шеффера)
a↓b
    - Не-или (стрелка Пирса)

Таблица с приоритетами:

Приоритет Операция Обозначение
7 НЕ NOT ¬
6 И AND
5 ИЛИ OR
5 Исключающее ИЛИ XOR
4 НЕ-И NAND |
3 НЕ-ИЛИ NOR
2 ЕСЛИ, ТО IMP
1 Эквивалентно EQU

Или в виде картинки:

Калькулятор математической логики сам умеет определять приоритет операций автоматом:

Если ввели:

0↓1|a↓a^bvd=>x↓c|1↓0

— преобразуется в:


0↓(1|a)↓((d∨(a∧b))⇒x)↓(c|1)↓0

Также калькулятор упростит это логическое выражение:


a∧c∧(¬x)∧(b∨d)

www.kontrolnaya-rabota.ru

Таблица математических символов | Virtual Laboratory Wiki

В математике повсеместно используются символы для упрощения и сокращения текста. Ниже приведён список наиболее часто встречающихся математических обозначений, соответствующие команды в TeXе, объяснения и примеры использования.

Кроме указанных символов, иногда используются их зеркальные отражения, например, $ A \subset B $ обозначает то же, что и $ B \supset A $.

Символ (TeX) Символ (Unicode) Название Значение Пример
Произношение
Раздел математики
$ \Rightarrow\, $ Импликация, следование $ A \Rightarrow B\, $ означает «если $ A $ верно, то $ B $ также верно».
Иногда вместо него используют $ \rightarrow\, $.
$ x = 2 \Rightarrow x^2 = 4\, $ верно, но $ x^2 = 4 \Rightarrow x = 2\, $ неверно (так как $ x=-2 $ также является решением).
«влечёт» или «если…, то»
везде
$ \Leftrightarrow $ Равносильность $ A \Leftrightarrow B $ означает «$ A $ верно тогда и только тогда, когда $ B $ верно». $ x + 5 = y + 2 \Leftrightarrow x + 3 = y\, $
«если и только если» или «равносильно
везде
$ \wedge $ Конъюнкция $ A \wedge B $ истинно тогда и только тогда, когда $ A $ и $ B $ оба истинны. $ (n>2)\wedge (n<4)\Leftrightarrow (n=3) $, если $ n $ — натуральное число.
«и»
Математическая логика
$ \vee $ Дизъюнкция $ A\vee B $ истинно, когда хотя бы одно из условий $ A $ и $ B $ истинно. $ (n\leqslant 2)\vee (n\geqslant 4)\Leftrightarrow n\ne 3 $, если $ n $ — натуральное число.
«или»
Математическая логика
$ \neg $ ¬ Отрицание $ \neg A $ истинно тогда и только тогда, когда ложно $ A $. $ \neg (A\wedge B)\Leftrightarrow (\neg A)\vee (\neg B) $
$ x\notin S\Leftrightarrow \neg(x\in S) $
«не»
Математическая логика
$ \forall $ Квантор всеобщности $ \forall x, P(x) $ обозначает «$ P(x) $ верно для всех $ x $». $ \forall n\in \mathbb N,\;n^2\geqslant n $
«Для любых», «Для всех»
Математическая логика
$ \exists $ Квантор существования $ \exists x,\;P(x) $ означает «существует хотя бы один $ x $ такой, что верно $ P(x) $» $ \exists n\in \mathbb N,\;n+5=2n $ (подходит число 5)
«существует»
Математическая логика
$ =\, $ = Равенство $ x=y $ обозначает «$ x $ и $ y $ обозначают один и тот же объект». 1 + 2 = 6 − 3
«равно»
везде
$ := $
$ :\Leftrightarrow $
$ \stackrel{\rm{def}}{=} $
 :=
:⇔
Определение $ x := y $ означает «$ x $ по определению равен $ y $».
$ P :\Leftrightarrow Q $ означает «$ P $ по определению равносильно $ Q $»
$ {\rm ch} (x) := {1\over 2}\left(e^x+e^{-x}\right) $ (Гиперболический косинус)
$ A \oplus B :\Leftrightarrow (A\vee B)\wedge \neg (A\wedge B) $ (Исключающее или)
«равно/равносильно по определению»
везде
$ \{ ,\} $ { , } Множество элементов $ \{a,\;b,\;c\} $ означает множество, элементами которого являются $ a $, $ b $ и $ c $. $ \mathbb N = \{0,\;1,\;2,\;\ldots \} $ (множество натуральных чисел)
«Множество…»
Теория множеств
$ \{ | \} $
$ \{ : \} $
{ | }
{ : }
Множество элементов, удовлетворяющих условию $ \{x\,|\,P(x)\} $ означает множество всех $ x $ таких, что верно $ P(x) $. $ \{n\in \mathbb N\,|\,n^2<20\} = \{0,\;1,\;2,\;3,\;4\} $
«Множество всех… таких, что верно…»
Теория множеств
$ \varnothing $
$ \{\} $

{}
Пустое множество $ \{\} $ и $ \varnothing $ означают множество, не содержащее ни одного элемента. $ \{n\in \mathbb N\,|\,1<n^2<4\} = \varnothing $
«Пустое множество»
Теория множеств
$ \in $
$ \notin $

Принадлежность/непринадлежность к множеству $ a\in S $ означает «$ a $ является элементом множества $ S $»
$ a\notin S $ означает «$ a $ не является элементом $ S $»
$ 2\in \mathbb N $
$ {1\over 2}\notin \mathbb N $
«принадлежит», «из»
«не принадлежит»
Теория множеств
$ \subseteq $
$ \subset $

Подмножество $ A\subseteq B $ означает «каждый элемент из $ A $ также являестя элементом из $ B $».
$ A\subset B $ обычно означает то же, что и $ A\subseteq B $. Однако некоторые авторы используют $ \subset $, чтобы показать строгое включение

vlab.wikia.org

Вставка математических знаков — Word

Примечание: Мы стараемся как можно оперативнее обеспечивать вас актуальными справочными материалами на вашем языке. Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки. Для нас важно, чтобы эта статья была вам полезна. Просим вас уделить пару секунд и сообщить, помогла ли она вам, с помощью кнопок внизу страницы. Для удобства также приводим ссылку на оригинал (на английском языке).

В Word можно вставлять математические символы в уравнения и текст.

  1. На вкладке Вставка в группе Символы щелкните стрелку рядом с надписью Формула и выберите Вставить новую формулу.

  2. В области Работа с формулами в группе Символы на вкладке Конструктор щелкните стрелку Еще.

  3. Щелкните стрелку рядом с названием набора символов, а затем выберите набор символов, который вы хотите отобразить.

  4. Щелкните нужный символ.

Доступные наборы символов

В группе Символы в Word доступны указанные ниже наборы математических символов. Щелкнув стрелку Еще, выберите меню в верхней части списка символов, чтобы просмотреть группы знаков.

Набор символов

Подгруппа

Определение

Основные математические символы

Нет

Часто используемые математические символы, такие как > и <

Греческие буквы

Строчные буквы

Строчные буквы греческого алфавита

Прописные буквы

Прописные буквы греческого алфавита

Буквоподобные символы

Нет

Символы, которые напоминают буквы

Операторы

Обычные бинарные операторы

Символы, обозначающие действия над двумя числами, например + и ÷

Обычные реляционные операторы

Символы, обозначающие отношение между двумя выражениями, такие как = и ~

Основные N-арные операторы

Операторы, осуществляющие действия над несколькими переменными

Сложные бинарные операторы

Дополнительные символы, обозначающие действия над двумя числами

Сложные реляционные операторы

Дополнительные символы, обозначающие отношение между двумя выражениями

Стрелки

Нет

Символы, указывающие направление

Отношения с отрицанием

Нет

Символы, обозначающие отрицание отношения

Наборы знаков

Наборы знаков

Математический шрифт Script

Готические

Математический шрифт Fraktur

В два прохода

Математический шрифт с двойным зачеркиванием

Геометрия

Нет

Часто используемые геометрические символы

Дополнительные сведения

Вставка флажка или другого символа

support.office.com

Знаки математические — Большая советская энциклопедия

Зна́ки математические

Условные обозначения, предназначенные для записи математических понятий, предложений и выкладок. Например, √2

(квадратный корень из двух), 3 > 2 (три больше двух) и т.п.

Развитие математической символики было тесно связано с общим развитием понятий и методов математики. Первыми З. м. были знаки для изображения чисел — Цифры, возникновение которых, по-видимому, предшествовало письменности. Наиболее древние системы нумерации — вавилонская и египетская — появились ещё за 31/2 тысячелетия до н. э.

Первые З. м. для произвольных величин появились много позднее (начиная с 5—4 вв. до н. э.) в Греции. Величины (площади, объёмы, углы) изображались в виде отрезков, а произведение двух произвольных однородных величин — в виде прямоугольника, построенного на соответствующих отрезках. В «Началах» Евклида (3 в. до н. э.) величины обозначаются двумя буквами — начальной и конечной буквами соответствующего отрезка, а иногда и одной. У Архимеда (3 в. до нашей эры) последний способ становится обычным. Подобное обозначение содержало в себе возможности развития буквенного исчисления. Однако в классической античной математике буквенного исчисления создано не было.

Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную (х) и её степени следующими знаками:

[ — от греческого термина δυναμις (dynamis — сила), обозначавшего квадрат неизвестной, — от греческого χυβος (k_ybos) — куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х5 изображалось

(где = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак ; равенство Диофант обозначал буквой ι [от греческого ισος (isos) — равный]. Например, уравнение

(x3 + 8x) — (5x2 + 1) = х

у Диофанта записалось бы так:

(здесь

означает, что единица не имеет множителя в виде степени неизвестного).

Несколько веков спустя индийцы ввели различные З. м. для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение

3х2 + 10x — 8 = x2 + 1

в записи Брахмагупты (См. Брахмагупта) (7 в.) имело бы вид:

йа ва 3 йа 10 ру 8

йа ва 1 йа 0 ру 1

(йа — от йават — тават — неизвестное, ва — от варга — квадратное число, ру — от рупа — монета рупия — свободный член, точка над числом означает вычитаемое число).

Создание современной алгебраической символики относится к 14—17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются З. м. для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания

(от лат. plus и minus), немецкие математики ввели современные + (вероятно, сокращение лат. et) и —. Ещё в 17 в. можно насчитать около десятка З. м. для действия умножения.

Различны были и З. м. неизвестной и её степеней. В 16 — начале 17 вв. конкурировало более десяти обозначений для одного только квадрата неизвестной, например се (от census — латинский термин, служивший переводом греческого δυναμις, Q (от quadratum), , A (2), , Aii, aa, a2 и др. Так, уравнение

x3 + 5x = 12

имело бы у итальянского математика Дж. Кардано (1545) вид:

у немецкого математика М. Штифеля (1544):

у итальянского математика Р. Бомбелли (1572):

французского математика Ф. Виета (1591):

у английского математика Т. Гарриота (1631):

В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли, 1550), круглые (Н. Тарталья, 1556), фигурные (Ф. Виет, 1593). В 16 в. современный вид принимает запись дробей.

Значительным шагом вперёд в развитии математической символики явилось введение Виетом (1591) З. м. для произвольных постоянных величин в виде прописных согласных букв латинского алфавита В, D, что дало ему возможность впервые записывать алгебраические уравнения с произвольными коэффициентами и оперировать ими. Неизвестные Виет изображал гласными прописными буквами А, Е,… Например, запись Виета

[cubus — куб, planus — плоский, т. е. В — двумерная величина; solidus — телесный (трёхмерный), размерность отмечалась для того, чтобы все члены были однородны] в наших символах выглядит так:

x3 + 3bx = d.

Виет явился творцом алгебраических формул. Р. Декарт (1637) придал знакам алгебры современный вид, обозначая неизвестные последними буквами лат. алфавита х, у, z, а произвольные данные величины — начальными буквами а, b, с. Ему же принадлежит нынешняя запись степени. Обозначения Декарта обладали большим преимуществом по сравнению со всеми предыдущими. Поэтому они скоро получили всеобщее признание.

Дальнейшее развитие З. м. было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.

Даты возникновения некоторых математических знаков

знак значение Кто ввёл Когда введён
Знаки индивидуальных объектов
бесконечность Дж. Валлис 1655
e основание натуральных логарифмов Л. Эйлер 1736
π отношение длины окружности к диаметру У. Джонс Л. Эйлер 1706 1736
i корень квадратный из -1 Л. Эйлер 1777 (в печати 1794)
i j k единичные векторы, орты У. Гамильтон 1853
П (а) угол параллельности Н.И. Лобачевский 1835
Знаки переменных объектов
x,y, z неизвестные или переменные величины Р. Декарт 1637
r вектор О. Коши 1853
Знаки индивидуальных операций
+ сложение немецкие математики Конец 15 в.
вычитание
× умножение У. Оутред 1631
умножение Г. Лейбниц 1698
: деление Г. Лейбниц 1684
a2, a3,…, an степени Р. Декарт 1637
И. Ньютон 1676
корни К. Рудольф 1525
А. Жирар 1629
Log логарифм И. Кеплер 1624
log Б. Кавальери 1632
sin синус Л. Эйлер 1748
cos косинус
tg тангенс Л. Эйлер 1753
arc.sin арксинус Ж. Лагранж 1772
Sh гиперболический синус В. Риккати 1757
Ch гиперболический косинус
dx, ddx, … дифференциал Г. Лейбниц 1675 (в печати
d2x, d3x,… 1684)
интеграл Г. Лейбниц 1675 (в печати 1686)
производная Г. Лейбниц 1675
ƒ’x производная Ж. Лагранж 1770, 1779
y’
ƒ'(x)
Δx разность Л. Эйлер 1755
частная производная А. Лежандр 1786
определённый интеграл Ж. Фурье 1819-22
Σ сумма Л. Эйлер 1755
П произведение К. Гаусс 1812
! факториал К. Крамп 1808
x модуль К. Вейерштрасс 1841
lim предел У. Гамильтон, 1853,
lim многие математики начало 20 в.
n = ∞
lim
n → ∞
ξ дзета-функция Б. Риман 1857
Г гамма-функция А. Лежандр 1808
В бета-функция Ж. Бине 1839
Δ дельта (оператор Лапласа) Р. Мёрфи 1833
набла (оператор Гамильтона) У. Гамильтон 1853
Знаки переменных операций
φx функция И. Бернули 1718
f (x) Л. Эйлер 1734
Знаки индивидуальных отношений
= равенство Р. Рекорд 1557
> больше Т. Гарриот 1631
< меньше
сравнимость К. Гаусс 1801
параллельность У. Оутред 1677
перпендикулярность П. Эригон 1634

И. Ньютон в своём методе флюксий и флюент (1666 и следующие гг.) ввёл знаки для последовательных флюксий (производных) величины (в виде

и для бесконечно малого приращения o. Несколько ранее Дж. Валлис (1655) предложил знак бесконечности ∞.

Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц. Ему, в частности, принадлежат употребляемые ныне З. м. дифференциалов

dx, d 2x, d 3x

и интеграла

Огромная заслуга в создании символики современной математики принадлежат Л. Эйлеру. Он ввёл (1734) в общее употребление первый знак переменной операции, именно знак функции f (x) (от лат. functio). После работ Эйлера знаки для многих индивидуальных функций, например тригонометрических, приобрели стандартный характер. Эйлеру же принадлежат обозначения постоянных е (основание натуральных логарифмов, 1736), π [вероятно, от греческого περιφερεια (periphereia) — окружность, периферия, 1736], мнимой единицы

(от французского imaginaire — мнимый, 1777, опубликовано в 1794).

В 19 в. роль символики возрастает. В это время появляются знаки абсолютной величины |x| (К. Вейерштрасс, 1841), вектора (О. Коши, 1853), определителя

(А. Кэли, 1841) и др. Многие теории, возникшие в 19 в., например Тензорное исчисление, не могли быть развиты без подходящей символики.

Наряду с указанным процессом стандартизации З. м. в современной литературе весьма часто можно встретить З. м., используемые отдельными авторами только в пределах данного исследования.

С точки зрения математической логики, среди З. м. можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание, когда указано, какие числа складываются: запись 1 + 3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определённое содержание, когда указано, между какими объектами отношение рассматривается. К перечисленным трём основным группам З. м. примыкает четвёртая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства действий.

Знаки каждой из трёх групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определённых объектов, операций и отношений, 2) общие знаки «неременных», или «неизвестных», объектов, операций и отношений.

Примеры знаков первого рода могут служить (см. также таблицу):

A1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел е и π; мнимой единицы i.

Б1) Знаки арифметических действий +, —, ·, ×,:; извлечения корня , дифференцирования

знаки суммы (объединения) ∪ и произведения (пересечения) ∩ множеств; сюда же относятся знаки индивидуальных функций sin, tg, log и т.п.

B1) Знаки равенства и неравенства =, >, <, ≠, знаки параллельности || и перпендикулярности ⊥, знаки принадлежности ∈ элемента некоторому множеству и включения ⊂ одного множества в другое и т.п.

Знаки второго рода изображают произвольные объекты, операции и отношения определённого класса или объекты, операции и отношения, подчинённые каким-либо заранее оговорённым условиям. Например, при записи тождества (a + b)(ab) = a2— b2 буквы а и b обозначают произвольные числа; при изучения функциональной зависимости у = х2 буквы х и у — произвольные числа, связанные заданным отношением; при решении уравнения

x2 — 1 = 0

х обозначает любое число, удовлетворяющее данному уравнению (в результате решения этого уравнения мы узнаём, что этому условию соответствуют лишь два возможных значения +1 и —1).

С логической точки зрения, законно такого рода общие знаки называть знаками переменных, как это принято в математической логике, не пугаясь того обстоятельства, что «область изменения» переменного может оказаться состоящей из одного единственного объекта или даже «пустой» (например, в случае уравнений, не имеющих решения). Дальнейшими примерами такого рода знаков могут служить:

A2) Обозначения точек, прямых, плоскостей и более сложных геометрических фигур буквами в геометрии.

Б2) Обозначения f, F, φ для функций и обозначения операторного исчисления, когда одной буквой L изображают, например, произвольный оператор вида:

Обозначения для «переменных отношений» менее распространены, они находят применение лишь в математической логике (см. Алгебра логики) и в сравнительно абстрактных, по преимуществу аксиоматических, математических исследованиях.

Лит.: Cajori F., A history of mathematical notations, v. 1—2, Chi., 1928—29.

Источник: Большая советская энциклопедия на Gufo.me


Значения в других словарях

  1. ЗНАКИ МАТЕМАТИЧЕСКИЕ — ЗНАКИ МАТЕМАТИЧЕСКИЕ — условные обозначения, служащие для записи математических понятий, предложений и выкладок. Напр., математические знаки +, -, =, > (больше) — (знак корня) — sin (синус) — (интеграл) и т. Большой энциклопедический словарь
  2. Знаки Математические — Условные обозначения, предназначенные для записи математич. понятий и выкладок. Напр., понятие «квадратный корень из числа… Математическая энциклопедия

gufo.me

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *