Кодирование графической информации

А

К

Достаточно для…

4

24= 16

 

8

28= 256

Рисованных изображений типа тех, что видим в мультфильмах, но недостаточно для изображений живой природы

16 (High Color)

216= 65536

Изображений, которые на картинках в журналах и на фотографиях

24 (True Color)

232= 16 777 216

Обработки и передачи изображений, не уступающих по качеству наблюдаемым в живой природе

Двоичный код изображения, выводимого на экран, хранится в видеопамяти. Видеопамять – это электронное энергозависимое запоминающее устройство. Размер видеопамяти зависит от разрешающей способности дисплея и количества цветов. Но ее минимальный объем определяется так, чтобы поместился один кадр (одна страница) изображения, т.е. как результат произведения разрешающей способности на размер кода пикселя.

Vmin = M * N * a (5)

Таблица 5

Двоичный код восьмицветной палитры

Цвет

Составляющие

к

З

С

Красный

1

0

0

Зеленый

0

1

0

Синий

0

0

1

Голубой

0

1

1

Пурпурный

1

0

1

Желтый

1

1

0

Белый

1

1

1

Черный

0

0

0

Шестнадцатицветная палитра позволяет увеличить количество используемых цветов. Здесь будет использоваться 4-разрядная кодировка пикселя: 3 бита основных цветов + 1 бит интенсивности. Последний управляет яркостью трех базовых цветов одновременно (интенсивностью трех электронных пучков).

Таблица 6

Двоичный код шестнадцатицветной палитры

Цвет

Составляющие

Красный

Зеленый

Синий

Интенсивность

Красный

1

0

0

0

Зеленый

0

1

0

0

Синий

0

0

1

0

Голубой

0

1

1

0

Пурпурный

1

0

1

1

Ярко-желтый

1

1

0

1

Серый(белый)

1

1

1

0

Темно-серый

0

0

0

1

Ярко-голубой

0

1

1

1

Ярко-синий

0

0

1

0

 

 

 

 

Ярко-белый

1

1

1

1

Черный

0

0

0

0

При раздельном управлении интенсивностью основных цветов количество получаемых цветов увеличивается. Так для получения палитры при глубине цвета в 24 бита на каждый цвет выделяется по 8 бит, то есть возможны 256 уровней интенсивности (К = 28).

Таблица 7

studfiles.net

6. Двоичное кодирование текстовой информации.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертаниям, а компьютер – по их кодам.

Присвоение символу конкретного кода – это вопрос соглашения, которое фиксируется в кодовой таблице.

При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Пользователь нажимает на клавиатуре клавишу с символом, а в компьютер поступает его двоичный код (последовательность из восьми электрических импульсов). Код символа хранится в оперативной памяти компьютера, где занимает 1 байт.

При выводе символа на экран происходит обратный процесс – декодирование, т.е. преобразование кода символа в его изображение.

7. Аналоговый и дискретный способы представления изображений и звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой и дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении

физическая величина принимает конечное множество значений, причем величина изменяется скачкообразно. Примеры аналогового и дискретного представлений информации помещены в Таблице 3.

Таблица 3. Примеры аналогового и дискретного представлений информации

Тип информации

Аналоговое представление

Дискретное представление

Графическая информация

Полотно живописной картины, цвет которой меняется непрерывно

Изображение, напечатанное с помощью струйного принтера (состоит из отдельных точек разного цвета)

Звуковая информация

Виниловая пластинка (звуковая дорожка меняет свою форму непрерывно)

Аудио-CD (звуковая дорожка содержит участки с различной отражающей способностью)

Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, т.е. разбиения непрерывного графического изображения (звукового сигнала) на отдельные элементы. В процессе дискретизации производится кодирование, т.е. присвоение каждому элементу конкретного значения в форме кода.

Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кода.

8. Двоичное кодирование графической информации.

В процессе кодирования изображения производится пространственная дискретизация

. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики. Изображение разбивается на отдельные мелкие фрагменты (точки), каждому из которых присваивается код цвета.

Качество кодирования зависит от размера точки (чем меньше размер точки, тем качество выше) и от цветовой палитры — количества цветов (чем больше количество, тем выше качество изображения).

Формирование растрового изображения.

Графическая информация на экране монитора представляет собой растровое изображение, которое формируется из определенного количества строк, содержащих определенное количество точек – пикселей.

Качество изображения определяется разрешающей способностью монитора, например, 800*600, 1280*1024. Чем больше разрешающая способность, тем выше качество изображения.

Рассмотрим формирование на экране монитора растрового изображения с разрешением 800*600 (800 точек на 600 строк, итого 480 000 точек на экране). В простейшем случае (черно-белое изображение без градаций серого цвета) – каждая точка может иметь одно из двух состояний – ”черная” или “белая”, т.е для хранения ее состояния необходим 1 бит. Таким образом, объем черно-белого изображения (количество информации) равен:

<Количество информации> = <Разрешающая способность>*1 (бит)

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки (хранится в видеопамяти). Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемых для кодирования цвета, например: 8, 16, 24 или 32 бита.

Качество двоичного кодирования изображения определяется разрешающей способностью и глубиной цвета (См. Таблицу 4).

Количество цветов N может быть вычислено по формуле: N=2i, где i – глубина цвета.

Таблица 4. Глубина цвета и количество отображаемых цветов.

Глубина цвета (i)

8

16 (High Color)

24 (True Color)

32 (True Color)

Количество изображаемых цветов (N)

28=256

216=65 536

224= 16 777 216

232= 4 294 967 296

Цветное изображение на экране монитора формируется за счет смешивания базовых цветов: красного, зеленого и синего. Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Например, при глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, т.е. для каждого из цветов возможны N=28=256 уровней интенсивности, заданные двоичными кодами от минимальной 00000000 до максимальной 11111111 (См. Таблицу 5).

Таблица 5. Формирование некоторых цветов при глубине цвета 24 бита.

Название

Интенсивность

цвета

Красный

Зеленый

Синий

Черный

00000000

00000000

00000000

Красный

11111111

00000000

00000000

Зеленый

00000000

11111111

00000000

Синий

00000000

00000000

11111111

Голубой

00000000

11111111

11111111

Желтый

11111111

11111111

00000000

Белый

11111111

11111111

11111111

Задание 21. (Задание A20 демоверсии 2005 г., А17 демоверсии 2006 г.)

Для хранения растрового изображения размером 128*128 пикселей отвели 4 килобайта памяти. Каково максимально возможное число цветов в палитре изображения?

Решение.

Воспользуемся формулами:

<Количество информации> = <Разрешающая способность>*<Глубина цвета>

(5)

<Количество цветов> =N = 2i, где i – глубина цвета.

(6)

В нашем случае:

<Количество информации> = 4 Кб = 4*210байт = 22*210байт = 212 байт =

= 8*212 бит = 23*212бит = 215 бит

(8)

<Разрешающая способность> = 128*128 = 27*27=214.

(9)

Подставив значения (8) и (9) в (5), получим, что: 215 = 214 *i, откуда i=2.

Тогда по формуле (6): <Количество цветов> =N = 2i=22=4, что соответствует ответу №4.

Ответ: 4.

studfiles.net

Двоичное кодирование графической информации — Мегаобучалка

 

Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).

Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения.

Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.

Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.

Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.

Pixel (picture element — элемент рисунка) — минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.

В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера.

Качество изображения будет тем выше, чем «плотнее» расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.

Для черно-белого изображения код цвета каждого пикселя задается одним битом.

Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.

Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета — так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.



Графическая информация, как и информация любого другого типа, хранятся в памяти компьютера в виде двоичных кодов. Изображение, состоящее из отдельных точек, каждая из которых имеет свой цвет, называется растровым изображением. Минимальный элемент такого изображения в полиграфии называется растр, а при отображении графики на мониторе минимальный элемент изображения называют пиксель (pix).

Пиксель Растр

Рис. 4.1. Минимальная единица изображения: пиксель и растр.

Если пиксель изображения может быть раскрашен только в один из 2х цветов, допустим, либо в черный (0), либо в белый (1), то для хранения информации о цвете пикселя достаточно 1 бита памяти (log2(2)=1 бит). Соответственно, объем, занимаемый в памяти компьютера всем изображением, будет равен числу пикселей в этом изображении (рис. 20а).

Если под хранение информации о цвете пикселя выделить 2 бита, то число цветов, допустимых для раскраски каждого пикселя, увеличится до 4х (N=22=4), а объем файла изображения в битах будет вдвое больше, чем количество составляющих его пикселей (рис. 20b).

Рис. 4.2. 1 бит на пиксель – 2 цвета. Рис. 4.3. 2 бита на пиксель – 4 цвета.

При печати на не цветном принтере обычно допускает 256 градаций серого цвета (от черного (0) до белого (255)) для раскраски каждой точки изображения. Под хранение информации о цвете точки в этом случае отводится 1 байт, т.е. 8 бит (log2(256)=8 бит).

Восприятие цвета

Цвет — это ощущение, которое возникает в сознании человека при воздействии на его зрительный аппарат электромагнитного излучения с длиной волны в диапазоне от 380 до 760 нм. Эти ощущения могут быть вызваны и другими причинами: болезнь, удар, мысленная ассоциация, галлюцинации, и др.

Способность к цветоощущению возникла в процессе эволюции как реакция адаптации, как способ получения сведений об окружающем мире и способ ориентирования в нем. Каждый человек воспринимает цвета индивидуально, отлично от других людей. Однако у большей части людей цветовые ощущения очень схожи.

Физической основой цветовосприятия является наличие специфических светочувствительных клеток в центральном участке сетчатки глаза, так называемых палочек и колбочек.

Различают три вида колбочек, по чувствительности к разным длинам волн света (цветам). Колбочки S-типа чувствительны в фиолетово-синей, M-типа — в зелено-желтой, и L-типа — в желто-красной частях спектра.

Наличие этих трех видов колбочек (и палочек, чувствительных в изумрудно-зеленой части спектра) даёт человеку цветное зрение.

В ночное время зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.

Каждое животное видит мир по-своему. Сидя в засаде, лягушка видит только движущиеся предметы: насекомых, на которых она охотится, или своих врагов. Чтобы увидеть всё остальное, она должна сама начать двигаться.

Сумеречные и ночные животные (например, волки и другие хищные звери), как правило, почти не различают цветов.

Стрекоза хорошо различает цвета только нижней половиной глаз, верхняя половина смотрит в небо, на фоне которого добыча и так хорошо заметна.

О хорошем зрении насекомых мы можем судить хотя бы по красоте цветков растений — ведь эта красота предназначена природой именно для насекомых — опылителей. Но мир, каким они его видят, сильно отличается от привычного для нас. Цветки, которые опыляют пчелы, обычно не окрашены в красный цвет: пчела этот цвет воспринимает, как мы — черный. Зато, вероятно, многие невзрачные на наш взгляд цветы приобретают неожиданные великолепие в ультрафиолетовом спектре, в котором видят насекомые. На крыльях некоторых бабочек (например, лимонницы, боярышницы) имеются узоры, скрытые от человеческого глаза и видимые только в ультрафиолетовых лучах. Когда муравьев в ходе опыта стали облучать сильными ультрафиолетовыми лучами, они побежали укрываться «в тень» не под защиту пропускавшей ультрафиолет темной дощечки, а под прозрачное, на наш взгляд, стекло, задерживавшее эти лучи.

Цветовые модели

Все объекты окружающего мира можно разделить на: излучающие (светящиеся: солнце, лампа, монитор), отражающие излучение (бумага) и пропускающие (стекло).

Рис. 4.4. Излучающие, отражающие и пропускающие объекты.

В зависимости от того, является объект излучающим или отражающим для представления описания его цвета в виде числового кода используются две обратных друг другу цветовые модели: RGB или CMYK.

RGB.Модель RGB используется в телевизорах, мониторах, проекторах, сканерах, цифровых фотоаппаратах… Эта модель является аддитивной (суммарной), что означает, что цвета в этой модели добавляются к черному (blacK) цвету.

Основные цвета в этой модели: красный (Red), зеленый (Green), синий (Blue). Их парное сочетание в равных долях дает дополнительные цвета: желтый (Yellow), голубой (Cyan) и пурпурный (Magenta).

R+G=Y; G+B=C; B+R=M.

Сумма всех трех основных цветов в равных долях дает белый (White) цвет: R+G+B=W.

CMYK. Цветовая модель CMYK используется в полиграфии при формировании изображений, предназначенных для печати на бумаге. Основными цветами в ней являются те, которые являются дополнительными в модели RGB, т.к. они получаются вычитанием цветов RGB из белого цвета. Поэтому модель CMYK называется субтрактивной.

C=W-R; M=W-G; Y=W-B.

В свою очередь парное сочетание в равных долях цветов модели CMY дает цвета модели RGB. Всем известно, что если смешать на бумаге желтую и голубую краску, получится зеленый цвет. На языке цветовых моделей, это описывается выражением: Y+C=G, кроме того, C+M=B и M+Y=R.

В теории, сумма C+M+Y=K, т.е. дает черный (blacK) цвет, но поскольку реальные типографские краски имеют примеси, их цвет не совпадает в точности с теоретически рассчитанным голубым, желтым и пурпурным. Особенно трудно получить из этих красок черный цвет. Поэтому в модели CMYK к триаде CMY добавляют черный цвет K. От слова blacK для обозначения черного цвета взята последняя буква, и т.к. буква B уже используется в модели RGB для обозначения синего цвета.

Рис. 4.5. Излучающий объект RGB. Рис. 4.5. Отражающий объект CMYK.

Если кодировать цвет одной точки изображения тремя битами, каждый из которых будет являться признаком присутствия (1) или отсутствия (0) соответствующей компоненты системы RGB, то мы получим все восемь различных цветов описанных выше моделей.

Таблица 4.2. Кодировка цветов

1 бит на каждый компонент RGB 23=8   R G B Цвет
W (white /белый)
Y (yellow / желтый)
M (magenta / пурпурный)
R (red / красный)
C (cyan / голубой)
G (green / зеленый)
B (blue /синий)
K (black / черный)

На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (т.е. 24 бита) — по 1 байту (т.е. по 8 бит) под значение цвета каждой составляющей. Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 (всего 28=256 значений), а каждая точка изображения, при такой системе кодирования может быть окрашена в один из 23*8=224=16 777 216 цветов. Такой набор цветов принято называть True Color (правдивые цвета), потому что человеческий глаз все равно не в состоянии различить большего разнообразия.

Рис. 4.6. Цветовой куб.

Изменяющиеся в диапазоне от 0 до 255 координаты RGB образуют цветовой куб. Любой цвет расположен внутри этого куба и описывается своим набором координат, показывающем в каких долях смешаны в нем красная, зеленая и синяя составляющие.

Таблица 4.3. Справочная таблица

Изображение Основа кодирования Памяти на пиксель Кол-во цветов
байт бит
Черно-белое Bitmap    
Оттенки серого 256 градаций серого 28=256
Цветное излучающее RGB 224=16 777 216
Цветное отражающее CMYK 232=429 4967 296

 

HSB.Две описанные выше модели удобны скорее для компьютеров, чем для нас с вами. Человеку гораздо проще не синтезировать цвет из отдельных составляющих, а выбирать его, ориентируясь на более естественные параметры: тон, насыщенность, яркость. Именно эти три параметра и стали основой для модели HSB (Hue, Saturation, Brightness), она же HSL (Hue, Saturation, Lightness).

Параметр тона Hue (читается «хью») — это чистый цвет сам по себе — один из цветов спектра (радуги). В модели HSB он представлен как замкнутый круг, положение конкретного оттенка на котором указывается в градусах от 0 до 359.

Параметр Saturation — это насыщенность. Чем меньше насыщенность, тем ближе цвет к серому и наоборот: с увеличением насыщенности цвет становится сочнее. Lightness, соответственно, определяет долю белого в итоговом цвете.

Lab.В попытке совместить цветовой охват моделей RGB и CMYK была создана модель Lab, не привязанная к среде вывода. Параметр модели L показывает общую яркость пикселов, параметром a передаются цвета от темно-зеленого до ярко-розового с разными вариациями насыщенности и яркости, а параметром b — от светло-синего до ярко-желтого. Модель Lab обеспечивает наибольшую совместимость, цветовой охват и скорость. Из-за своей универсальности Lab широко используется способными в ней разобраться профессионалами.

megaobuchalka.ru

Кодирование изображений в двоичный код — Студопедия.Нет

Чтобы сохранить в двоичном коде фотографию, ее сначала виртуально разделяю на множество мелких цветных точек, называемых пикселями (что-то на подобии мозаики).

После разбивки на точки цвет каждого пикселя кодируется в бинарный код и записывается на запоминающем устройстве.

Первая цифровая фотокамера, созданная в 1975 г. инженерами компании Kodak, весила 3 кг, делала черно-белые снимки размером 100Х100 пикселей и сохраняла их в двоичном коде на магнитную ленту. Запись одного снимка длилась дольше 20 секунд.

Если говорят, что размер изображения составляет, например, 512 х 512 точек, это значит, что оно представляет собой матрицу, сформированную из 262144 пикселей (количество пикселей по вертикали, умноженное на количество пикселей по горизонтали).

Прибором, «разбивающим» изображения на пиксели, является любая современная фотокамера (в том числе веб-камера, камера телефона) или сканер.

И если в характеристиках камеры значится, например, «10 MegaPixels», значит количество пикселей, на которые эта камера разбивает изображение для записи в двоичном коде, — 10 миллионов.

Чем на большее количество пикселей разделено изображение, тем реалистичнее выглядит фотография в декодированном виде (на мониторе или после распечатывания).

Для кодирования графических данных применяется, например, такой метод кодирования как растр. Координаты точек и их свойства описываются с помощью целых чисел, которые кодируются с помощью двоичного кода. Однако качество кодирования фотографий в бинарный код зависит не только от количества пикселей, но также и от их цветового разнообразия.

Так черно-белые графические объекты могут быть описаны комбинацией точек с 256 градациями серого цвета, т.е. для кодирования яркости любой точки достаточно 8-разрядного двоичного числа.

Алгоритмов записи цвета в двоичном коде существует несколько. Самым распространенным из них является RGB. Эта аббревиатура – первые буквы названий трех основных цветов: красного – англ.Red, зеленого – англ. Green, синего – англ. Blue. Режим представления цветной графики в системе RGB с использованием 24 разрядов (по 8 разрядов для каждого из трех основных цветов) называется полноцветным.

Смешивая эти три цвета в разных пропорциях, можно получить любой другой цвет или оттенок.На этом и построен алгоритм RGB. Каждый пиксель записывается в двоичном коде путем указания количества красного, зеленого и синего цвета, участвующего в его формировании.

Чем больше битов выделяется для кодирования пикселя, тем больше вариантов смешивания этих трех каналов можно использовать и тем значительнее будет цветовая насыщенность изображения.

Цветовое разнообразие пикселей, из которых состоит изображение, называется глубиной цвета.

Если для кодирования каждого пикселя какого-то изображения выделяется 8 битов двоичного кода, цветовое разнообразие составит 256 цветов.

Глубина цвета 12-битов даст 4096 цветов, 16-битов — 65536 цветов, 18-битов — 262144 цветов.

Максимальная глубина цвета, используемая в компьютерной технике – 24 бита. Такую глубину часто называют TrueColor («Настоящий цвет»). Она позволяет отобразить около 16,7 млн. цветов. Глаз человека не способен воспринимать большее их количество.

Для полноцветного режима в системе CMYK необходимо иметь 32 разряда (четыре цвета по 8 разрядов).

 

Но кроме растровой графики, в компьютерах используется еще и так называемая векторнаяграфика.

Векторные изображения создаются только при помощи компьютера (фотокамеры этого делать «не умеют») и формируются не из пикселей, а из графических примитивов (линий, многоугольников, окружностей и др.).

Зачем нужна векторная графика? В известной детской песенке поется, что для изображения «человечка» достаточно нарисовать всего две «палки» и «огуречек». А представьте, насколько трудно вручную составить человечка из большого числа точек.

Векторная графика – это чертежная графика. Она очень удобна для компьютерного «рисования» и широко используются дизайнерами при графическом оформлении печатной продукции, в том числе создании огромных рекламных плакатов, а также в других подобных ситуациях.

Векторное изображение в двоичном коде записывается как совокупность примитивов с указанием их размеров, цвета заливки, места расположения на холсте и некоторых других свойств.

Например, чтобы записать на запоминающем устройстве векторное изображение круга, компьютеру достаточно в двоичный код закодировать тип объекта (окружность), координаты его центра на холсте, длину радиуса, толщину и цвет линии, цвет заливки.

В растровой системе пришлось бы кодировать цвет каждого пикселя. И если размер изображения большой, для его хранения понадобилось бы значительно больше места на запоминающем устройстве.

Тем не менее, векторный способ кодирования не позволяет записывать в двоичном коде реалистичные фото. Поэтому все фотокамеры работают только по принципу растровой графики. Рядовому пользователю иметь дело с векторной графикой в повседневной жизни приходится не часто.


Кодирование звуковой информации

Любой звук, слышимый человеком, является колебанием воздуха, которое характеризируется двумя основными показателями: частотой и амплитудой.

Амплитуда колебаний – это степень отклонения состояния воздуха от начального при каждом колебании. Она воспринимается нами как громкость звука.

Частота колебаний – это количество отклонений состояний воздуха от начального за единицу времени. Она воспринимается как высота звука.

Так, тихий комариный писк – это звук с высокой частотой, но с небольшой амплитудой. Звук грозы наоборот имеет большую амплитуду, но низкую частоту.

Если графически изобразить звуковую волну, она будет выглядеть следующим образом:

Схему работы компьютера со звуком в общих чертах можно описать так.

Микрофон превращает колебания воздуха в аналогичные по характеристикам электрические колебания.

Звуковая карта компьютера «умеет» преобразовывать электрические колебания в двоичный код, который записывается на запоминающем устройстве. При воспроизведении такой записи происходит обратный процесс (декодирование) – двоичный код преобразуется в электрические колебания, которые поступают в аудиосистему или наушники.

Динамики акустической системы или наушников имеют противоположное микрофону действие. Они превращают электрические колебания в колебания воздуха.

Но каким же образом звуковая карта преобразовывает электрические колебания в двоичный код?

Если взглянуть на графическое изображение волны и внимательно проанализировать ее геометрию, можно увидеть, что в каждый конкретный момент времени звук имеет определенную интенсивность (степень отклонения от начального состояния).

Значит если весь отрезок времени, в течение которого длится звук, разделить на очень маленькие временные участки, то звуковую волну можно будет записать как очередность значений интенсивности звука в каждом таком временном участке.

Но частота «дробления» звука должна быть достаточно высокой, иначе значения участков не будут отображать реальную геометрию волны. Вот примеры слишком низкой частоты дробления.

Описанный принцип разделения звуковой волны на мелкие участки и лежит в основе двоичного кодирования звука.

Аудиокарта компьютера разделяет звук на очень мелкие временные участки и кодирует степень интенсивности каждого из них в двоичный код. Такое «дробление» звука на части называется дискретизацией. Чем выше частота дискретизации, тем точнее фиксируется геометрия звуковой волны и тем качественней получается запись.

Так, простая речь (например, диктофонная запись) нормально воспринимается человеком, если частота дискретизации при кодировании была не ниже 8000 Гц (8 КГц). То есть, каждая секунда такой записи в двоичном коде должна состоять как минимум из 8000 частей.

Музыкальные же произведения, хранимые в компьютере, должны иметь еще более высокую частоту дискретизации. При записи стандартных звуковых CD она составляет минимум 44,1 КГц (44100 Гц).

Качество записи сильно зависит также от количества битов, используемых компьютером для кодирования каждого участка звука, полученного в результате дискретизации.

Представим, например, что для кодирования каждого такого участка компьютер использует 8 битов. Как известно, 8-битная ячейка может принимать одно из 256 значений. Но вдруг разнообразие интенсивности участков, полученных при дискретизации какого-то звука, оказалось более широким (например, 512 вариантов). В таком случае, компьютер «округлит» интенсивность участков до ближайших доступных значений чтобы «уложиться» в 256 вариантов и качество записи получится низким.

Количество битов, используемых для кодирования каждого участка звука, полученного при дискретизации, называется глубиной звука.

Глубины звука в 8-битов достаточно для кодирования простой речи. Но музыкальные произведения с такой глубиной будут звучать отвратительно. Поэтому гораздо чаще встречаются звуковые файлы, закодированные с глубиной 16, 24 или даже 32 бита.

Следует учитывать, что далеко не все устройства, предназначенные для воспроизведения «цифрового» звука, могут работать с файлами, закодированными с высокой частотой дискретизации и/или большой глубиной звука. Такие файлы могут проигрываться на одном компьютере, и «не открываться» на другом (если звуковая карта не поддерживает настолько высокий уровень дискретизации или глубины звука).

 

studopedia.net

Кодировка цвета и изображения. Методические рекомендации:

Учащиеся пользуются знаниями, полученными ранее Системы счисления, перевод чисел из одной системы в другую.

Используется и теоретический материал темы:

Цветное растровое изображение формируется в соответствие с цветовой моделью RGB, в которой тремя базовыми цветами являютсяRed(красный),Green(зеленый) иBlue(синий). Интенсивность каждого цвета задается 8-битным двоичным кодом, который часто для удобства выражают в шестнадцатеричной системе счисления. В этом случае используется следующий формат записиRRGGBB.

Уровень «3»

27. Запишите код красного цвета в двоичном, шестнадцатеричном и десятичном представлении. (2.51 [3])

Решение:

Красный цвет соответствует максимальному значению интенсивности красного цвета и минимальным значениям интенсивностей зеленого и синего базовых цветов, что соответствует следующим данным:

Коды/Цвета

Красный

Зеленый

Синий

двоичный

11111111

00000000

00000000

шестнадцатеричный

FF

00

00

десятичный

256

0

0

28. Сколько цветов будет использоваться, если для каждого цвета пикселя взято 2 уровня градации яркости? 64 уровня яркости каждого цвета?

Решение:

1. Всего для каждого пикселя используется набор из трех цветов (красный, зеленый, синий) со своими уровнями яркости (0-горит, 1-не горит). Значит, K=23 =8 цветов.

2.643 =262144

Ответ: 8; 262 144 цвета.

Уровень «4»

29. Заполните таблицу цветов при 24- битной глубине цвета в 16- ричном представлении.

Решение:

При глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, т.е для каждого из цветов возможны 256 уровней интенсивности (28 =256). Эти уровни заданы двоичными кодами (минимальная интенсивность -00000000, максимальная интенсивность -11111111). В двоичном представлении получается следующее формирование цветов:

Название цвета

Интенсивность

Красный

Зеленый

Синий

Черный

00000000

00000000

00000000

Красный

11111111

00000000

00000000

Зеленый

00000000

11111111

00000000

Синий

00000000

00000000

11111111

Белый

11111111

11111111

11111111

Переведя в 16-ричную систему счисления имеем:

Название цвета

Интенсивность

Красный

Зеленый

Синий

Черный

00

00

00

Красный

FF

00

00

Зеленый

00

FF

00

Синий

00

00

FF

Белый

FF

FF

FF

30.На «маленьком мониторе» с растровой сеткой размером 10 х 10 имеется черно-белое изображение буквы «К». Представить содержимое видеопамяти в виде битовой матрицы, в которой строки и столбцы соответствуют строкам и столбцам растровой сетки. ([6], c.143, пример 4)

studfiles.net

6. Двоичное кодирование текстовой информации.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертаниям, а компьютер – по их кодам.

Присвоение символу конкретного кода – это вопрос соглашения, которое фиксируется в кодовой таблице.

При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Пользователь нажимает на клавиатуре клавишу с символом, а в компьютер поступает его двоичный код (последовательность из восьми электрических импульсов). Код символа хранится в оперативной памяти компьютера, где занимает 1 байт.

При выводе символа на экран происходит обратный процесс – декодирование, т.е. преобразование кода символа в его изображение.

7. Аналоговый и дискретный способы представления изображений и звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой и дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем величина изменяется скачкообразно. Примеры аналогового и дискретного представлений информации помещены в Таблице 3.

Таблица 3. Примеры аналогового и дискретного представлений информации

Тип информации

Аналоговое представление

Дискретное представление

Графическая информация

Полотно живописной картины, цвет которой меняется непрерывно

Изображение, напечатанное с помощью струйного принтера (состоит из отдельных точек разного цвета)

Звуковая информация

Виниловая пластинка (звуковая дорожка меняет свою форму непрерывно)

Аудио-CD (звуковая дорожка содержит участки с различной отражающей способностью)

Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, т.е. разбиения непрерывного графического изображения (звукового сигнала) на отдельные элементы. В процессе дискретизации производится кодирование, т.е. присвоение каждому элементу конкретного значения в форме кода.

Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кода.

8. Двоичное кодирование графической информации.

В процессе кодирования изображения производится пространственная дискретизация. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики. Изображение разбивается на отдельные мелкие фрагменты (точки), каждому из которых присваивается код цвета.

Качество кодирования зависит от размера точки (чем меньше размер точки, тем качество выше) и от цветовой палитры — количества цветов (чем больше количество, тем выше качество изображения).

Формирование растрового изображения.

Графическая информация на экране монитора представляет собой растровое изображение, которое формируется из определенного количества строк, содержащих определенное количество точек – пикселей.

Качество изображения определяется разрешающей способностью монитора, например, 800*600, 1280*1024. Чем больше разрешающая способность, тем выше качество изображения.

Рассмотрим формирование на экране монитора растрового изображения с разрешением 800*600 (800 точек на 600 строк, итого 480 000 точек на экране). В простейшем случае (черно-белое изображение без градаций серого цвета) – каждая точка может иметь одно из двух состояний – ”черная” или “белая”, т.е для хранения ее состояния необходим 1 бит. Таким образом, объем черно-белого изображения (количество информации) равен:

<Количество информации> = <Разрешающая способность>*1 (бит)

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки (хранится в видеопамяти). Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемых для кодирования цвета, например: 8, 16, 24 или 32 бита.

Качество двоичного кодирования изображения определяется разрешающей способностью и глубиной цвета (См. Таблицу 4).

Количество цветов N может быть вычислено по формуле: N=2i, где i – глубина цвета.

Таблица 4. Глубина цвета и количество отображаемых цветов.

Глубина цвета (i)

8

16 (High Color)

24 (True Color)

32 (True Color)

Количество изображаемых цветов (N)

28=256

216=65 536

224= 16 777 216

232= 4 294 967 296

Цветное изображение на экране монитора формируется за счет смешивания базовых цветов: красного, зеленого и синего. Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Например, при глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, т.е. для каждого из цветов возможны N=28=256 уровней интенсивности, заданные двоичными кодами от минимальной 00000000 до максимальной 11111111 (См. Таблицу 5).

Таблица 5. Формирование некоторых цветов при глубине цвета 24 бита.

Название

Интенсивность

цвета

Красный

Зеленый

Синий

Черный

00000000

00000000

00000000

Красный

11111111

00000000

00000000

Зеленый

00000000

11111111

00000000

Синий

00000000

00000000

11111111

Голубой

00000000

11111111

11111111

Желтый

11111111

11111111

00000000

Белый

11111111

11111111

11111111

Задание 21. (Задание A20 демоверсии 2005 г., А17 демоверсии 2006 г.)

Для хранения растрового изображения размером 128*128 пикселей отвели 4 килобайта памяти. Каково максимально возможное число цветов в палитре изображения?

Решение.

Воспользуемся формулами:

<Количество информации> = <Разрешающая способность>*<Глубина цвета>

(5)

<Количество цветов> =N = 2i, где i – глубина цвета.

(6)

В нашем случае:

<Количество информации> = 4 Кб = 4*210байт = 22*210байт = 212 байт =

= 8*212 бит = 23*212бит = 215 бит

(8)

<Разрешающая способность> = 128*128 = 27*27=214.

(9)

Подставив значения (8) и (9) в (5), получим, что: 215 = 214 *i, откуда i=2.

Тогда по формуле (6): <Количество цветов> =N = 2i=22=4, что соответствует ответу №4.

Ответ: 4.

studfiles.net

Двоичный код 256-цветной палитры

Цвет

Составляющие

K

З

С

Красный

11111111

00000000

00000000

Зеленый

00000000

11111111

00000000

Синий

00000000

00000000

11111111

Голубой

00000000

11111111

11111111

Пурпурный

11111111

00000000

11111111

Желтый

11111111

11111111

00000000

Белый

11111111

11111111

11111111

Черный

00000000

00000000

00000000

4.2.3 Векторное и фрактальное изображения

Векторное изображение – это графический объект, состоящий из элементарных отрезков и дуг. Базовым элементом изображения является линия. Как и любой объект, она обладает свойствами: формой (прямая, кривая), толщиной., цветом, начертанием (пунктирная, сплошная). Замкнутые линии имеют свойство заполнения (или другими объектами, или выбранным цветом). Все прочие объекты векторной графики составляются из линий. Так как линия описывается математически как единый объект, то и объем данных для отображения объекта средствами векторной графики значительно меньше, чем в растровой графике. Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.

К программным средствам создания и обработки векторной графики относятся следующие ГР: CorelDraw, Adobe Illustrator, а также векторизаторы (трассировщики) – специализированные пакеты преобразования растровых изображений в векторные.

Фрактальная графика основывается на математических вычислениях, как и векторная. Но в отличии от векторной ее базовым элементом является сама математическая формула. Это приводит к тому, что в памяти компьютера не хранится никаких объектов и изображение строится только по уравнениям. При помощи этого способа можно строить простейшие регулярные структуры, а также сложные иллюстрации, которые имитируют ландшафты.

Примеры решения задач

Задача №1

Какой объем памяти в Кбайтах будет занимать растровое изображение из палитры в 256 цветов при разрешающей способности монитора 960 на 600.

Решение:

Для кодирования 256 цветов требуется 8 бит (28=256). Изображение займет объем памяти равный 960*600*8бит=4 608 000 бит = 576 000 байт = 562,5 Кбайт

Задача №2

Какой объем информации потребуется, чтобы закодировать картинку, состоящую из 64 на 128 цветных точек, если цвет точки формируется тремя цветами с 8 градациями яркости.

Решение:

Для построения цветного изображения яркость каждого из 3-х цветов разбиты на 8 градаций (уровней). Тогда для кодирования яркости одного цвета потребуется 3 бита информации (23=8), а для кодирования цвета точки 3*3=6 битов.

Изображение займет объем памяти равный 64*128*6 бит=49 152 бит = 6 144 байт = 6 Кбайт

4.2.4 Кодирование звуковой информации

Как известно, звук – это колебания воздуха, представляющие собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем громче звук для человека; чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, такой непрерывный (аналоговый) звуковой сигнал должен быть преобразован в последовательность электрических импульсов (двоичных нулей и единиц).

Семпл – это промежуток времени между двумя измерениями амплитуды аналогового сигнала.

Дословно Sample переводится с английского как «образец». В мультимедийной и профессиональной звуковой терминологии это слово имеет несколько значений. Кроме промежутка времени семплом называют также любую последовательность цифровых данных, которые получили путем аналого-цифрового преобразования. Сам процесс преобразования называют семплированием. В русском техническом языке называют его дискредитацией.

Для кодирования непрерывного звукового сигнала производится его дискретизация по времени (временная дискретизация, оцифровка). Непрерывная звуковая волна разбивается на отдельные короткие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Это выполняется устройством, называемым аналогово-цифровым преобразователем (АЦП), который измеряет напряжение поступающего с микрофона звукового сигнала через равные промежутки времени и записывает полученные значения (в виде многоразрядных двоичных чисел) в память компьютера. В результате, непрерывная зависимость амплитуды сигнала от времени заменяется на дискретную последовательность значений уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек» (рисунок 7).

Рисунок 7 – Преобразование звукового сигнала

Для того чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование, для которого служит цифро-аналоговый преобразователь (ЦАП), а затем сгладить получившийся ступенчатый сигнал (через аналоговый фильтр).

Каждой «ступеньке» присваивается значение уровня громкости (амплитуды) звука, его код (1, 2, 3, и т. д.). Таким образом, при двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Уровни громкости звука можно рассматривать как набор возможных состояний. Соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

Важными параметрами семплирования являются частота и разрядность.

Частота – это количество измерений амплитуды аналогового сигнала в секунду. Если частота семплирования не будет более чем в два раза превышать частоту верхней границы звукового диапазона, то на высоких частотах будут происходить потери. Это объясняет то, что стандартная частота для звукового компакт-диска – это частота 44,1 кГц. Так как диапазон колебаний звуковых волн находится в пределах от 20 Гц до 20 кГц, то количество измерений сигнала в секунду должно быть больше, чем количество колебаний за тот же промежуток времени. Если же частота дискредитации значительно ниже частоты звуковой волны, то амплитуда сигнала успевает несколько раз измениться за время между измерениями, а это приводит к тому, что цифровой отпечаток несет хаотичный набор данных. При цифро-аналоговом преобразовании такой семпл не передает основной сигнал, а только выдает шум.

В формате компакт-дисков Audio DVD за одну секунду сигнал измеряется 96 000 раз, т.е. применяют частоту семплирования 96 кГц. Для экономии места на жестком диске в мультимедийных приложениях довольно часто применяют меньшие частоты: 11, 22, 32 кГц. Это приводит к уменьшению слышимого диапазона частот, а, значит, происходит сильное искажение того, что слышно.

Разрядность указывает, с какой точностью происходят изменения амплитуды аналогового сигнала («глубина» кодирования звука). Точность, с которой при оцифровке передается значение амплитуды сигнала в каждый из моментов времени, определяет качество сигнала после цифро-аналогового преобразования. Именно от разрядности зависит достоверность восстановления формы волны.

Для кодирования значения амплитуды используют принцип двоичного кодирования. Звуковой сигнал должен быть представленным в виде последовательности электрических импульсов (двоичных нулей и единиц). Обычно используют 8, 16-битное или 20-битное представление значений амплитуды. При двоичном кодировании непрерывного звукового сигнала его заменяют последовательностью дискретных уровней сигнала. От частоты дискредитации (количества измерений уровня сигнала в единицу времени) зависит качество кодирования. С увеличением частоты дискредитации увеличивается точность двоичного представления информации. При частоте 8 кГц (количество измерений в секунду 8000) качество семплированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц (количество измерений в секунду 48000) – качеству звучания аудио-CD.

В современных преобразователях принято использовать 20-битное кодирование сигнала, что позволяет получать высококачественную оцифровку звука.

Вспомним формулу К = 2a . Здесь К – количество всевозможных звуков (количество различных уровней сигнала или состояний), которые можно получить при помощи кодирования звука а битами

Таблица 8

studfiles.net

Отправить ответ

avatar
  Подписаться  
Уведомление о